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A number of models in chromatography have analytical solutions in the Laplace or Fourier domain. Often,
the moments of the Laplace domain solutions are calculated to characterize the peak shape. Nonlinear
fitting in the Fourier domain can be performed to exploit the entire peak shape rather than the moments
only. Curve fitting in the Fourier domain offers an attractive alternative for parameter estimation. In this
study we will show – with some simple applications – the possibilities of estimation of chromatographic
peak shape parameters in Fourier domain. Various models are fitted to different transient signals.
urve fitting
hromatography

. Introduction

Fourier methods have been very popular in analytical chemistry.
ourier transform proved to be a rather powerful means in various
ethods of signal and resolution enhancement [1]. Noise filtering
ith a variety of smoothing windows can be carried out more effec-

ively in Fourier domain than with moving window averaging in
ime domain, although the two approaches are equivalent in the-
ry. Fourier-domain filtering is mostly used as a low-pass filter, i.e.
o cut-off the high-frequency region of the Fourier transform by an
ppropriate smoothing window [2].

Deconvolution of the instrumental broadening effects can also
e rather easily carried out via the Fourier transform of the sig-
al. The deconvolution of overlapping peaks by frequency domain
econvolution consists in calculating the Fourier transform of the
hromatogram, dividing it with the Fourier transform of an appro-
riate sharpening function followed by taking the inverse Fourier
ransform. The broadening of a chromatographic band is influenced
y several on-column and extra-column factors. The band broaden-

ng of the peak is simply characterized by the variance of the peak,
ecause the variances of the individual processes – due to injection,
etector, tubing, column, etc. – are additive. Thus, the various band
roadening and distorting effects can be deconvoluted as long as
he behavior of the system is linear [3–5].

A statistical approach for extracting average properties of multi-
omponent chromatograms has been developed by Fourier analysis

r power spectrum analysis [6–10]. The aim of the power spectrum
nalysis is to determine the number of detectable components, the
ean peak width, and the retention pattern. The Fourier analysis

egards the chromatogram as a finite-length fraction of a stochas-
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tic process. Fourier analysis can be applied to ordered or disordered
chromatograms as well and the repetitive occurrences of peak clus-
ters can be identified to estimate the number of components or
chemical families.

The estimation of the peak shape parameters can be performed
in frequency domain also [11]. There is a two-fold advantage of
doing that. First, the high-frequency noise is eliminated by the
Fourier transformation of the signal and, secondly, one can observe
in which region of the frequency domain is the important infor-
mation contained. Felinger et al. used the extended Kalman filter
to recursively estimate the peak shape parameters of noisy chro-
matograms.

Several models of chromatography offer simple solutions in
the Laplace and the Fourier domain; very often the inverse trans-
formation of the solution of the model to time domain is quite
complicated, in some cases no analytical solution of the inverse
transform exist. In those cases, when the time domain expressions
of a model are not readily available, parameter estimation in the
Fourier domain offers an attractive alternative for direct determi-
nation of model parameters [12]. In this study we will show – via
some direct applications – the possibilities of the estimation of the
chromatographic peak shape parameters in Fourier domain.

2. Theory

2.1. Fourier transform

The Fourier transform of a continuous function f(t) is defined by
the following integral:
F(ω) =
∫ ∞

−∞
f (t)e−iωt dt =

∫ ∞

−∞
f (t)(cos ωt − i sin ωt) dt (1)

where t is time, ω is frequency and i is the imaginary unit.
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The Fourier transform of a digitized signal – containing N data
oints recorded over a time period T with �t = T/N sampling time
can be calculated with discrete Fourier transform as

n = 1
N

N−1∑
k=0

fke−i2�nk/N, n = 0, 1, . . . , N − 1 (2)

he frequency ωn that belongs to value Fn is

n = 2�n

T
= 2�n

N�t
(3)

he distance between adjacent harmonics is determined by the
bservation time T

ω = 2�

T
(4)

he maximum observable angular frequency depends on the fre-
uency of data acquisition:

max = �N

T
= �

�t
(5)

hen the Fourier transform of a signal containing N points is calcu-
ated by an FFT algorithm, the result is a complex array containing

real (Xr) and imaginary (Xi) values. The data array is, however,
edundant, because the second half of the array is the mirror image
f the first half. The first element of the real part Xr,1 contains the
rea or the mean of the time-domain signal, depending on the algo-
ithm. The first element of the imaginary part Xi,1 is always zero
hen a real function is being transformed. The second element

f either array contains the data for frequency ω = 2�/T, etc. The
N/2 + 1) th element belongs to ωmax. The further points of the arrays
ontain the Fourier spectrum for negative frequencies.

.1.1. Convolution theorem
The convolution theorem is the most powerful Fourier theorem

sed in signal processing. The convolution integral of two functions
s defined as

(t) =
∫ ∞

−∞
f (u)g(t − u) du (6)

ccording to the convolution theorem of the Fourier transform, the
onvolution integral in time domain simplifies to a multiplication
n frequency domain

(t) ∗ g(t) ⇔ F(ω)G(ω) (7)

here operator ∗ stands for convolution.

.2. Hartley transform

The Hartley transform is closely related to the Fourier transform.
he Hartley transform of a time-dependent signal, h(t), is defined
s[13]

(ω) =
∫ ∞

−∞
f (t)(cos ωt + sin ωt) dt (8)

he major difference between Fourier and Hartley transforms is
hat H(ω) is a real function, as opposed to the complex Fourier
ransformed signal. There exists a simple connection between the
ourier, F(ω), and the Hartley, H(ω), transform of a signal: the Hart-
ey transform is obtained when the imaginary part of the Fourier

ransform is subtracted from its real part

(ω) = �F(ω) − �F(ω) (9)

he linearity, shift, convolution, derivative, etc. properties of
ourier transform hold true for Hartley transform too.
2011) 1074–1078 1075

The Hartley transform in sparsely utilized in analytical chem-
istry. Economou et al. for instance, used the fast Hartley transform
for the deconvolution of overlapping peaks [14].

3. Experimental

An Agilent 1100 liquid chromatograph – equipped with a mul-
tisolvent delivery system, a manual sample injector with a 20-�L
loop, a column thermostat, a multi-wavelength UV detector and a
Chemstation software – was used for all measurements. The col-
umn used was a Waters Symmetry C18 column (4.6 mm × 75 mm,
average particle size 3.5 �m). Phenol and thiourea were purchased
from Sigma–Aldrich; J.T. Baker HPLC grade methanol and Milli-Q
ultra pure water was used at all experiments.

The flow rate was 0.50 mL/min. The column thermostat was set
at 20 ◦C. Each measurement was executed with methanol–water
(80:20, v/v) solution as mobile phase. The standard mixture con-
tained 0.8 �g/mL of phenol and 1.6 �g/mL thiourea. 20 �L of the
standard mixture was injected in all measurements. The compo-
nents were detected at 254 nm. The data acquisition frequency was
20 Hz.

3.1. Computations

Calculations (time domain and frequency domain curve fitting)
were carried out by the public domain gnuplot software. That soft-
ware utilizes the Levenberg–Marquardt algorithm for nonlinear
least-squares fitting. The nonlinear fitting procedure was carried
out on the raw chromatographic data or on the Fourier transformed
data without additional noise filtering.

4. Results and discussion

4.1. Injection without the column

When we remove the column from the instrument and directly
connect the injector to the detector, we record a band profile that
characterizes the extra-column contribution of the HPLC instru-
ment. In most of the cases – provided that the injected volume is
small – the exponentially modified Gaussian (EMG) peak fits well
that peak. The EMG peak is obtained with the convolution of a
Gaussian and exponential decay function [1]:

f (t) = 1
2�

exp

[
�2

2�2
− t − m

�

]
erfc

[
�√
2�

− t − m√
2�

]
(10)

where m is the mean, � is the standard deviation of the Gaussian
peak, � is the time constant of the exponential decay function.

The Fourier transform of the EMG function is [5,11]

F(ω) = e−ω2�2/2−iωm

1 − iω�
(11)

The real and imaginary parts of F(ω) are, respectively

�F(ω) = e−ω2�2/2 cos ωm + ω� sin ωm

1 + �2ω2
(12)

and

�F(ω) = −e−ω2�2/2 ω� cos ωm − sin ωm

1 + �2ω2
(13)

The Hartley transform of the EMG model is
H(ω) = e−ω2�2/2 (1 − ω�) cos ωm + (1 + ω�) sin ωm

1 + �2ω2
(14)

When the EMG model is fitted to experimental data, the conven-
tional time domain fitting is probably more straightforward than
the fitting in Fourier or Hartley domain. The real advantage of the
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tting procedure in frequency domain lies in the ability to exploit
odels that do not have a closed analytical form in time domain.

he EMG function, however, can serve as a reference model that can
qually be fitted in both time and frequency domains. A compari-
on of the numerical values of the parameters obtained by various
tting procedures can help judge whether or not the parameter
stimation is biased.
To determine the extra-column contribution of the instrument,
hiourea was injected into a mobile phase containing 80:20 % (v/v)

ethanol–water. The recorded signal is plotted in Fig. 1a. When
e fit Eq. (10) to the recorded peak, a small deviation between the
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ig. 1. Curve fitting to the extra-column band profile; the fitting in time domain
top), simultaneous fitting to the real and imaginary parts of the Fourier transform
middle), fitting to the Hartley transform (bottom).
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measured and fitted signal is observed around the take-off and the
apex of the peak. This deviation indicates that the EMG model is
not as accurate for the modeling of the extra-column contribution
as other, more realistic models may be.

A more accurate model can be formulated by taking the solution
of the diffusion equation. Diffusion with drift in a pipe leads to the
following first-passage distribution [15]:

f (t) =
√

Ndt0

2�t3
exp

[
−Nd

2
(t − t0)2

t0t

]
(15)

where t0 is the void time and Nd is the plate number due to mobile
phase dispersion.

The Fourier transform of f(t) is [15]:

F(ω) = exp[Nd −
√

Nd(Nd − 2iωt0)] (16)

To consider the mixer-type extra-column volumes, the convolution
of Eq. (15) with an exponential decay function

f (t) = e−t/�

�
(17)

is necessary. The evaluation of that convolution in time domain is
rather cumbersome. In Fourier domain, however, convolution can
simply be calculated by a multiplication (see Eq. (7)).

The Fourier transform of the exponential decay function is

F(ω) = 1
1 − iω�

= 1
1 + ω2�2

+ i
ω�

1 + ω2�2
(18)

When we combine the Gaussian and the mixer-type extra-column
contributions in Fourier domain, we take the products of Eqs. (16)
and (18):

F(ω) = exp[Nd −
√

Nd(Nd − 2iωt0)]

1 − iω�
(19)

Eq. (19) cannot simply be transformed back to time domain, there-
fore the direct parameter estimation in time domain is not feasible.
On the basis of Eq. (19), the parameter estimation in Fourier or Hart-
ley domain can be carried. out. See Fig. 2b and c and Table 1 for the
results of the fitting.

The parameters obtained by fitting Eq. (19), allow the evalua-
tion of the extra-column properties of the instrument. From the
value of the first statistical moment, �1 = t0 + �, we obtain the extra
column volume as Vex = 59.1 �L. Its variance is calculated from the
second central moment: �′

2 = t2
0/Nd + �2 = 2.19 s2, which is equiv-

alent to 152.2 �L2, i.e. the standard deviation due to extra-column
broadening is � = 12.3 �L.

Although Eq. (19) gives a more accurate model of the extra-
column broadening than the EMG function, the numerical values
in Table 1 demonstrate that the EMG model can also be utilized for
a rough estimation of the peak shape parameters.

4.2. Peak shape of the unretained marker

The peak shape of the injected thiourea was evaluated by means
of the peak shape models used in the previous section. The EMG
model was fitted in time domain, as well as to the Fourier and
Hartley transformed signal. The results are summarized in Fig. 2

and in Table 1. Both the EMG model and the model formulated by
combining the diffusion equation with the exponential term fit the
observed peak equally.

When peak tailing is due to extra column effects, the EMG model
is quite often used to model the peak shape.
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Table 1
Best-fitting peak shape parameters for the instances presented in Figs. 1–3.

Time domain Fourier domain Hartley domain

Extra-column contribution
EMG

m [s] (RSD %) 5.844 (0.088) 5.848 (0.384) 5.841 (0.159)
� [s] (RSD %) 0.939 (0.464) 0.940 (0.384) 0.939 (0.906)
� [s] (RSD %) 1.290 (0.750) 1.260 (3.220) 1.275 (1.320)

Diffusion + exponential decay
Nd (RSD %) – – 32.23 (1.41) – –
t0 [s] (RSD %) – – 6.074 (0.229) – –
� [s] (RSD %) – – 1.023 (1.83) – –

Unretained tracer
EMG

m [s] (RSD %) 94.99 (0.071) 94.91 (0.097) 94.86 (0.105)
� [s] (RSD %) 1.461 (0.338) 1.460 (0.183) 1.459 (0.206)
� [s] (RSD %) 1.601 (0.714) 1.542 (0.360) 1.642 (0.374)

Diffusion + exponential decay
Nd (RSD %) – – 4162 (0.415) – –
t0 [s] (RSD %) – – 94.94 (0.0044) – –
� [s] (RSD %) – – 1.515 (0.437) – –

Phenol
EMG

m [s] (RSD %) 658.5 (0.040) 657.9 (0.176) 657.9 (0.179)
� [s] (RSD %) 6.224 (0.140) 6.207 (0.048) 6.206 (0.792)
� [s] (RSD %) 2.610 (1.20) 3.272 (3.97) 3.282 (4.02)

Stochastic–dispersive model
n (RSD %) – – 14,933 (0.656) – –

Fourier domain, and only numerical solution in time domain, again,
it is convenient to perform the fitting in the Fourier domain. The
important numerical values are reported in Table 1. The results
aneous fitting to the real and imaginary parts of the Fourier transform (middle),
tting to the Hartley transform (bottom).

.3. Peak shape of a retained analyte

The peak of phenol – detected in a reversed phase sep-
ration system – is plotted in Fig. 3. The peak is fairly
ymmetrical due to homogeneous interactions between the sta-
ionary phase and the solute molecules, but still it carries
ome asymmetry due to extra/column effects. Again, the EMG

odel was fitted in time domain, as well as in the Fourier

nd Hartley domains. The numerical results are summarized in
able 1.
�s [s] (RSD %) – – 0.0378 (0.326) – –

Although we can see in Fig. 3 that the EMG model rather
nicely fits the peak shape of phenol, here we face a general
problem. The EMG model loses its physical meaning when a
retained peak is studied. If one wants to gain insights into the
details of the separation problem, a real physical model should be
employed.

The stochastic model of chromatography offers a rather attrac-
tive solution in this instance [16]. This model assumes that while
migrating along the column, a molecule performs a random num-
ber of adsorption and desorption steps characterized by a Poisson
distribution. Furthermore, once a molecule is adsorbed on the
stationary phase, the time spent until desorption – the sojourn
time – is a random variable, too. This latter random variable fol-
lows an exponential distribution. When this model is combined
with mobile phase dispersion, the stochastic–dispersive model is
obtained [15,17]. The Fourier transform of the peak shape model
is

�R(ω) = exp

[
Nd

(
1 −
√

1 − 2iω

Nd

(
n�s

1 − iω�s
+ t0

))]
(20)

where n is the mean number of mass transfer steps, �s is the average
adsorption time, t0 is the void time, and Nd is the plate number due
to mobile phase dispersion. Eq. (20) is the characteristic function of
the probability density function of the elution time of the individual
molecules. Formally, the characteristic function is identical to the
Fourier transform [18].

Since the stochastic model has an analytical solution in the
show that as the phenol molecules migrate along the column, a sin-
gle molecule, on the average, adsorbs n = 14, 933 times, the average
adsorption time being �s = 37.8 ms.
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5. Conclusions

The physical models of flow systems or chromatography are
often solved in Fourier of Laplace domain in closed form. The Fourier
or Hartley transform of the experimentally recorded signals can
be calculated, and the models can directly be fitted. In this case,
information from the entire peak shape is utilized.

We have shown using various models of extra-column broaden-
ing the importance of the exact physical model. Also the stochastic
model of chromatography is rather convenient to fit in the Fourier
domain, since the characteristic function of the peak shape is
expressed analytically.

The parameter estimation in frequency domain gives results
identical to the time domain curve fitting; the accuracy of the
frequency domain estimation is excellent. One observes, how-
ever, that the precision of the parameter estimation is somewhat
worse in frequency domain. That occurs in spite of the fact that
Fourier transform separates the low-frequency signal and the high-
frequency noise. The noise pattern of the UV detector signals
exhibits a brown (1/f2) or pink (1/f) spectrum [19]. Thus, the low-
frequency component of the noise is more dominant than the
high-frequency one and it overlaps with the low-frequency sig-
nal in the Fourier or Hartley domain, affecting the precision of the
parameter estimation.
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